Dynamic response of FG-CNTRC beams subjected to a moving mass

نویسندگان

چکیده

This article presents the forced vibration of composite beams reinforced by single-walled carbon nanotubes (SWCNTs) and subjected to a moving mass. Considering distribution such as uniform (UD-CNT), functionally graded Λ (FGΛ-CNT) X (FGX-CNT), three different are studied. Based on third-order shear deformation theory (TSDT), motion equations derived using Hamilton's principle. Including mass interaction forces, transformed into finite element equation in which two-node beam with eight degrees freedom is utilized. To improve efficiency element, transverse rotation employed an independent variable derivation element. The characteristics, including dynamic magnification factors time histories for mid-span deflections computed Newmark method. Numerical result reveal that clearly influenced CNT reinforcement, significantly decreased increasing volume fraction. It also shown FGX-CNT best resistance terms lowest deflection factors. effects total fraction load velocity behaviour nanotube composites (FG-CNTRC) examined detail highlighted.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Response Analysis of Fractionally Damped Beams Subjected to External Loads using Homotopy Analysis Method

This paper examines the solution of a damped beam equation whose damping characteristics are well-defined by the fractional derivative (FD). Homotopy Analysis Method (HAM) is applied for calculating the dynamic response (DR). Unit step and unit impulse functions are deliberated for this analysis. Acquired results are illustrated to show the movement of the beam under various sets of parameters ...

متن کامل

Vibration Analysis of Beams Traversed by a Moving Mass

A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...

متن کامل

Dynamic responses of poroelastic beams with attached mass-spring systems and time-dependent, non-ideal supports subjected to moving loads: An analytical approach

The present study is the first to analyze the dynamic response of a poroelastic beam subjected to a moving force. Moreover, the influences of attached mass-spring systems and non-ideal supports (with local movements in the supporting points or base due to the presence of factors such as gaps, unbalanced masses, and friction or seismic excitations) on the responses were investigated. Non-ideal s...

متن کامل

Dynamic Behavior Analysis of a Geometrically Nonlinear Plate Subjected to a Moving Load

In this paper, the nonlinear dynamical behavior of an isotropic rectangular plate, simply supported on all edges under influence of a moving mass and as well as an equivalent concentrated force is studied. The governing nonlinear coupled PDEs of motion are derived by energy method using Hamilton’s principle based on the large deflection theory in conjuncture with the von-Karman strain-displacem...

متن کامل

Chaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses

A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Vietnam Journal of Science and Technology

سال: 2022

ISSN: ['2525-2518']

DOI: https://doi.org/10.15625/2525-2518/16300